4.4 Strand

The Sun is a star that appears larger and brighter than other stars because it is closer to Earth. The rotation of Earth on its axis and orbit of Earth around the Sun cause observable patterns. These include day and night; daily changes in the length and direction of shadows; and different positions of the Sun and stars at different times of the day, month, and year.
STORYLINE: 4.4.1 Brightness of the Stars

Standard(s) 4.4.1: Construct an explanation that differences in the apparent brightness of the Sun compared to other stars is due to the relative distance (scale) of stars from Earth. Emphasize relative distance from Earth. (ESS1.A)


Constructing Explanations and Designing:  Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution.

Disciplinary Core Ideas

ESS1.A: The Universe and its Stars 

The sun is a star that appears larger and brighter than other stars because it is closer. Stars range greatly in their distance from Earth.

Cross Cutting Concepts

Scale, Proportion, and Quantity: Standard units are used to measure and describe physical quantities such as weight and volume.

Phenomena Statement

Some stars are brighter than other stars.

Storyline Narrative
To begin our storyline, students are presented with a phenomena, what is a star? To obtain information, students engage by making observations from a short video and an image of the night sky and generate questions to make sense of what they are seeing in relation to scale and proportion of objects in the night sky. Through discussion and online research about what a star is and what a star is not, students compose a definition of what a star is. This leads them to question why does the sun appear to be so much brighter than other stars in the sky? Students explore this phenomenon by discussing and preparing an argument using evidence from real world examples and come to an understanding that the Sun is much closer than other stars. This understanding leads students to question how the sun compares to other stars and new phenomenon, why do larger stars seem brighter than others. Students develop models using real world examples to explain that the sun is average and that distance causes objects to appear larger or smaller than their actual size. Students elaborate on their understanding of the size of Earth in comparison to other celestial objects by constructing an argument from evidence. To evaluate their understanding, students are presented with a new phenomenon that two stars appear to be the same size in the night sky, but NASA states one is three times bigger. Students explain and argue from evidence why NASA’s statement is correct.
STORYLINE: 4.4.2 Making Sense of Shadows

Standard(s) 4.4.2: Analyze and interpret data of observable patterns to show that Earth rotates on its axis and revolves around the Sun. Emphasize patterns that provide evidence of Earth’s rotation and orbits around the Sun. Examples of patterns could include day and night, daily changes in length and direction of shadows, and seasonal appearance of some stars in the night sky. Earth’s seasons and its connection to the tilt of Earth’s axis will be taught in Grades 6 through 8. (ESS1.B)


Analyzing and Interpreting Data Analyzing data in 3–5 builds on K–2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used. 

  • Analyze and interpret data to make sense of phenomena using logical reasoning.

Disciplinary Core Ideas

ESS1.B: Earth and the Solar System

The orbits of Earth around the Sun and of the Moon around Earth, together with the rotation of Earth about an axis between its North and South poles, cause observable patterns. These include day and night; daily changes in the length and direction of shadows; and different positions of the Sun, Moon, and stars at different times of the day, month, and year.

Cross Cutting Concepts


Patterns can be used as evidence to support an explanation. 

Phenomena Statement

We experience night and day. When we (Utah) are experiencing noon day Bisnek, Kyrgyzstan is experiencing Midnight.

Storyline Narrative

To begin, students make observations about the cause of night and day. In a small team, students carry out an investigation by creating a model of the Earth’s movement. A large map is wrapped around one team member as they rotate in front of a lamp to show Earth’s rotation that creates the pattern of night and day. Students then  gather evidence that constellations move across the sky as the night progresses by observing patterns in the video “Constellations in Motion.”  Students plan and carry out an investigation using a camera to recreate the patterns observed in the video “Constellations in Motion.” They will present their recorded video and narrative of their constructed explanation. Students then analyze and interpret data provided to discover the daily and  seasonal movement of constellations throughout the year. Using evidence from the prior episode, team members construct explanations about why some constellations can’t be seen throughout the year. Finally students use what they have learned about the sun-earth system to explain how Earth’s rotation makes a sundial work. 

Site Feedback

Utah Science

Curriculum Consortium

Tyson Grover 


Annette Nielson